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Abstract

This paper reports the preliminary results of a study of the software maintenance
process in the Flight Dynamics Division (FDD) of the National Aeronautics and Space
Administration/Goddard Space Flight Center (NASA/GSFC). This study is being
conducted by the Software Engineering Laboratory (SEL), a research organization
sponsored by the Software Engineering Branch of the FDD, which investigates the
effectiveness of software engineering technologies when applied to the development
of applications software.

This software maintenance study began in October 1993 and is being conducted
using the Quality Improvement Paradigm (QIP), a process improvement strategy
based on three iterative steps: understanding, assessing, and packaging. The
preliminary results presented in this paper represent the outcome of the
understanding phase, during which SEL researchers characterized the maintenance
environment, product, and process.

Findings indicate that a combination of quantitative and qualitative analysis is
effective for studying the soltware maintenance process; that additional measures
should be collected for maintenance (as opposed to new development); and that
characteristics such as effort, error rate, and productivity are best considered on a
"release" basis rather than on a project basis. The research thus far has documented
some basic differences between new development and software maintenance. It lays
the foundation for further application of the QIP to investigate means of improving the
maintenance process and product in the FDD.
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Introduction

Goddard Space Flight Center (GSFC) manages
and controls NASA's Earth-orbiting scientific
satellites and also supports Space Shuttle
flights. For fulfilling both these complex mis-
sions, the Flight Dynamics Division (FDD)
developed and now maintains over 100 differ-
ent software systems, ranging in size from 10
thousand source lines of code (KSLOC) to
250 KSLOC, and totaling 4.5 million SLOC.
Of these systems, 85% are written in
FORTRAN, 10% in Ada, and 5% in other

languages. Most of the systems run on IBM
mainframe computers, but 10% run on PCs or
UNIX workstations.

The Soft'ware Engineering Laboratory (SEL)
has been researching and experimenting in the
FDD since 1976 with the goal of understand-
ing the software development process in this
environment; measuring the effect of soft-
ware engineering methodologies, tools, and
models on this process; and identifying and
applying successful practices (Reference 1).
The SEL has developed an approach to proc-
ess improvement known as the Quality
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Improvement Paradigm (QIP) and has
established a supporting organizational sU'uc-
ture, the Experience Factory, for maintaining
the experience base, which is a key element of
this work. These concepts, and their applica-
tion specifically in this study of software
maintenance are described in detail in Sections

1 and 2 of this paper.

One of the key features of this research is the
combination of qualitative and quantitative
approaches used to characterize the current
practice of software maintenance in the FDD.
These methods affected the design of the

experience base developed for the study, by
influencing which maintenance products and
projects would be examined and which specific
measures would be collected. The structure of

the study is described in Section 3. Sections 4
and 5, respectively, elaborate on the qualita-
tive analysis of the maintenance process and
the quantitative analysis of the product and
process characteristics. Section 6 discusses
lessons learned and early recommendations

for process improvement, and Section 7 poses
questions that will guide future direction for
this research.

1. The Quality lmprovement

Paradigm

The QIP is a three-step iterative process that
provides an organization with a framework
for continuously improving its methods of
doing business. These steps-understanding,

assessing, packaging-are shown in Figure 1.

The QIP begins with understanding, because
before an organization can begin planning for
improvement, it must thoroughly understand
its current processes, products, and environ-
mental characteristics. At the current time,
the FDD maintenance study is completing its

first pass through this step.

During the second phase of the maintenance
study, corresponding with the assessing step
of the QIP, improvement goals will be set,
experiments conducted, and their results
assessed. The experiments will test new
methods or tools that show promise of help-

hag this organization achieve its improvement
goals. If these experiments demonstrate
significant improvements in the process or

Figure 1. Quality Improvement Pmdigm

products, these lessons will be incorporated
into the overall FDD organization.

This third and final phase of the QIP, the
packaging step, requires significant invest-
ment to truly capitalize on the time and
money spent in the understanding and assess-
ing steps. It may require developing new
standards as well as implementing and fielding

comprehensive training in these new
standards.

After completing the packaging step,
researchers will baseline the new process by
returning to the understanding step, to verify
the positive effect of process evolution on
the system. Thus begins a new iteration of
the QIP.

1.1 The QIP and Software

Development Projects

The QIP has been used many times within the
SEL to investigate the potential of new tools
or processes on sot_waxe development proj-
ects. In its more detailed application, the QIP
consists of six steps (Reference 2):

1. Characterize the current project and its
environment with respect to models and
measures. Begin by characterizing the

development project relative to the envi-
ronment. What kind of product is being

developed? How large is the project?
What is the schedule? How is the project
similar to and different from prewous
projects? This is used to provide models
of similar experiences from similar
projects.

2. Set quantifiable goals for successful project
performance and improvement. Is the
goal to shorten cycle time, reduce errors,
achieve higher software reuse?
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3. Choose an appropriate process model and
supporting methods and tools for this

project. Choose processes for the project
that show promise of achieving the stated
goals based upon past experience with
projects of this type. Identify projects
with similar characteristics and similar

goals.

4. Execute the processes, construct the
products, collect and validate the pre-
scribed data, and analyze them to provide
real-time feedback for corrective action.

5. Analyze the data to evaluate the current
practices, determine problems, record
findings, and make recommendations for
future project improvements.

6. Package the experience as updated and
refined models and other forms of struc-

tured knowledge gained from this project
and prior projects. Save it in an experi-
ence base to be reused on future projects.

1.2 The QIP and Software

Maintenance

For maintenance, the implementation of the
QIP is slightly different, because past releases
of the same project provide additional experi-
ence. The underscored phrases below indicate
maintenance-specific foci of the QIP.

1. Characterize the current project release

and proposed set of modifications and its
envi ronment.

2. Set quantifiable goals for successful project
performance and improvement and the

future evolution of this product. Remem-
ber that this release will soon be followed

by another release and yet another
release.

3. Choose an appropriate process model and
supporting methods and tools for this
project based on both domain class and

specific product knowledge. When study-

ing maintenance, there is an advantage
over applying the QIP to new devel-
opment projects because knowledge and
experience are available about this specific
product.

4. Execute the processes, construct the

products, collect and validate the pre-
scribed data, and analyze them to provide
real-time feedback for corrective action,

includin/_ real-time preventive mainte-

nance on the current proiect.

5. Analyze the data to evaluate the current
practices and their effects on this product.

Characterize the current product, deter-
mine problems, record findings, and make
recommendations for this product and
future project improvements.

6. Package the experience as updated and
refined models and other forms of struc-

tured knowledge gained from this project
and prior projects. Save it in an experi-
ence base for future projects and the evo-

lution of this product.

2. The Experience Factory

The SEL researchers and database team act as

an experience factory for the software devel-

opers in the FDD (Reference 3). The experi-
ence factory organization is separate from the
project organization. It serves the project
organization by analyzing and synthesizing
knowledge into models that support the
improvement of software development (see
Figure 2). It does so by concentrating on the
analysis and packaging activities of the QIP,
while the project organization focuses on
developing the software. The project organi-
zation supplies process and product data to
the experience factory and carries out
experiments under the guidance of the experi-
ence factory team. The experience factory
collects and analyzes the data from the proj-
ect organization. It stores these data and
analyses in an experience database. It also

packages the best of these experiences into
products, guidelines, and models, which it

feeds back to the project organization to help
improve its process.

The experience factory for maintenance
operates the same as the experience factory
for development, with three differences:

First, the experience factory for maintenance
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Figure 2. The Experience Factory

must address releases. Second, analysis for
release feedback requires quicker response;
development life cycles are on the order of
18-24 months, whereas maintenance release

cycles arc on the order of 6 months. Third,
software maintenance emphasizes product
evolution more than software development
does, so experience includes past experience
on the same project.

3. Building the Experience Base for
Software Maintenance

Because there are many similarities between

software development and sofb_vare mainte-
nance, the SEL experience of software devel-
opment was used as a starting point for
understanding maintenance. The measure-
ment program for maintenance was modeled
on the measurement program that is used for
understanding software development. This
influenced both the goals that were set and
also the specific data that were identified for
collection. To characterize the process, data
were collected on maintenance effort distribu-

tion by activity, similar to the measures col-
lected for new development, with some
tailoring for maintenance-specific activities.
To characterize the products, data were col-
lected on a number of measures, including the

amount of code modified for a release and the

number of errors introduced by the mainte-
nance work. The specific measures are dis-
cussed in more detail below.

The study team consisted of a team leader
from NASA, three researchers from the Uni-
versity of Maryland, and one researcher from
Computer Sciences Corporation. The team
leader chew up the initial study plan contain-
ing the overall goals, the specific questions to
be answered, and the list of maintenance
measures to be collected for analysis. Data
were collected on eleven maintenance proj-
ects. In addition, researchers closely moni-
tored four of these projects and stayed in
close contact with the maintenance teams on

those projects. The entire study team met
regularly throughout the study to refine the
study plan and assess progress. These meet-
ings also resulted in some revisions to the
collected measures.

Following the lead of Lionel Briand, one of
the University of Maryland researchers, a
general qualitative analysis methodology was
adopted, tailored, and applied to the four
closely monitored maintenance projects
(Reference 4). This methodology provided an
objective but qualitative project characteriza-
tion that complemented the quantitative
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characterization that was provided by the
measurement data. By supplying the
researchers with a characterization of the

organization structures, processes, issues, and
risks of the maintenance environment, the
qualitative analysis also helped them refine
the data collection measures. In return, the
quantitative data helped researchers to

understand the qualitative data. This qualita-
tive analysis methodology also provided a
process for determining the causal links
between maintenance problems, on the one
hand, and flaws in the maintenance process or
maintenance organization, on the other hand.
The following two sections describe the com-

bined qualitative and quantitative approach in
detail.

4. Six-Step Process to Qualitative

Understanding

The qualitative analysis methodology con-
sisted of six steps, depicted in Figure 3.

Researchers accomplished each step by
reviewing release documents and process
description documents, and also by inter-
viewing maintenance team members.

Steps 1 through 3 provided an understanding
of the maintenance organization and the
release process followed by the project. With

this information for several projects,
researchers were able to draw comparisons
between projects and to check each project
for adherence to maintenance policies.
Steps 4 through 6 provided the mechanism for
identifying where problems existed for each
project and for demonstrating flaws in the
maintenance organization or the maintenance
process (as followed by the project).

4.1 Understanding Steps (1-3)

Step 1 called for identifying the organiza-
tional entities involved in the maintenance

process. Researchers identified distinct teams,

their roles, and the information flows among
these teams. For example, for each project,
release approval passed from the configura-
tion control board to the maintenance team.

In Step 2, researchers identified the phases of
the release process and the major milestones
that bounded these phases. For example, the
change analysis phase culminated in the

Release Contents Review meeting, and the
solutmn analysis & design phase culminated
in the Release Design Review meeting.

Step3 required identifying the activities
involved in each phase. Researchers selected
a list of generic maintenance activities and

Step 2:

Identify
phases

Step 3:

Identify
activities

involved in
eachphase

Step 1:

Identify
organizational

entities

Understanding Steps

step 4:

Selectoneor

Step 5:

problems that
occurred in

_st roloase(s)

I

• i

Step S:

Establish
frequencyand
cortsequences

of ¢lws in
processand
or_._iza_on

I

I | ,

Analysis Steps

Figure 3. Qualitative Approach to Understanding
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mapped them into the various phases identi-
fied in Step 2. In Step 3, researchers also iden-
tiffed the inputs and outputs for each phase.
For example, in one project, the solution
analysis & design phase activities included
release scheduling and planning, understanding
the requirements of changes, changing the
designs, some coding, and some quality assur-
ance. Inputs included the Release Contents
Review document; offline discussions among
maintainers, users, analysts, and testers; and
answers to formal questions submitted to

analysts. The outputs included the prelimi-
nary designs, test plans, prototypes, release
schedule, and size estimates.

4.2 Analysis Steps (4-6)

In Step 4, researchers chose a previous soft-
ware maintenance release for analysis.
Researchers took care to select a recent

release, so that the studied release reflected
the current process, and so that complete
release documentation was available. This
choice also made it more likely that the tech-
nical lead from the release would be accessible
for interviews.

In StepS, researchers studied the release
documentation and interviewed the appropri-

ate parties to define and analyze the problems
encountered in developing this release. For
each software change request in the release,
researchers determined the size of the change,
assessed the relative difficulty of the change,

and identified any errors or delays that
resulted from implementing this change
request. If errors or delays resulted from this
work, researchers then attempted to deter-
mine the maintenance process flaws (if any)
that caused these. For example, in one proj-

ect, a change request for a major enhance-
ment resulted in 11 subsequent errors,
substantial rework, and up to 1 month of lost
effort on the release. The errors stemmed

initially from incomplete or ambiguous
change requirements written by the users.
The maintainers designed the enhancement
based on these written requirements. The fact

that the requirements were deficient and that
design r evertheless proceeded on the
enhancement, was judged by researchers to
represent a maintenance process flaw. The

effect of this flaw, however, was then com-

pounded by a subsequent lack of communica-
tion between the users and maintainers. The

users neglected to attend the Release Contents
Review and then voiced no objections to the
design presented by the maintainers at the
Release Design Review. When later, at the
Release Acceptance Test Readiness Review,
the users finally objected to the implementa-
tion of the enhancement, much time had been
lost. This lack of communication revealed

either an unclear definition of release respon-
sibilities or a lack of adherence to the defined

responsibilities.

In Step 6, researchers assessed the frequency
and the consequences of flaws in the mainte-
nance process and organization as provided by
the data gathered in Step 5, and made recom-
mendations for improvements to the process.
For this study, the analysis led to three
recommendations: 1) provide guidelines for
content and format of change requests;

2) explicitly define the content of documents
and review materials; 3)enforce stricter
adherence to the maintenance process, espe-
cially attendance at review meetings and
review/approval of designs.

5. Quantitative Approach to

Understanding

In past studies of development projects,
tracking the developers' estimates of effort,
product size, and schedule has been useful, so
similar data were collected for maintenance
releases. For maintenance, however, the
schedule milestones are somewhat different

from development. Thus data were collected
on effort hours between release start, release
contents review, release design review, release

acceptance test readiness review, and release
operational readiness review. Researchers
monitored and attempted to model the effort

that programmers, testers, and managers
expend on a maintenance release by breaking
the effort down into types of software activ-
ity, such as coding, documenting, regression
testing, and acceptance testing. Additional
activities specific to (or more prominent in)
maintenance were included, such as impact

analysis, cost benefit analysis, and error isola-
tion time.
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The purpose of the quantitative approach was
to define and collect those measurements that

would most meaningfully characterize the

maintenance process and products. Analysis
of these data should establish a baseline model

of the current maintenance process that
answers the following questions"

1. What is the distribution of effort among
soRvcare activities during maintenance?

2. What are the characteristics of a main-
tenance release?

3. What are the characteristics of mainte-
l_/lce elTors?

4. What are the error rates and change
rates?

To achieve the maintenance study goal and t o
answer these specific questions, the following
data were collected:

1. Effort by activity (i.e., impact analy-
sis/cost benefit analysis, isolation,
change design, code/unit test, inspec-
tion/certification/consulting, integration
test, acceptance test, regression test,
system documentation, user/other
documentation, other hours)

2. Effort by type of maintenance change
(i.e., adaptation, error correction,
enhancement)

3. Error and change data

- Time spent (i.e., effort to isolate,
effort to fix)

- Source of error (i.e., previous
change, code, design, requirements,
other)

- Class of error (i.e., initialization,
logic, external interface, internal
interface, computational, or other)

4. Release estimates and actuals (i.e.,
schedule, effort, number of lines of

code, number of modules)

5. Size of software under maintenance

(lines of code)

In January 1994, the SEL began collecting
data on the eleven target maintenance proj-
ects. A new soRware release estimates form
was created and introduced at this time. Two

existing data collection forms (a weekly effort

form and a soRware change request form) had
already been in use for some time within the

organization, and were already being used by
three of the eleven target projects. These
two existing forms continued to be collected,
but now were required for all eleven target
projects. In August 1994, following comple-
tion of some of the qualitative analysis and
after discussions with a wider circle of main-

tainers, the weekly effort form was revised to
capture effort by release and by change
request instead of merely by project. The
software activities list also was broadened.

The preliminary results of the quantitative
data analysis are summarized below.

5.1 Maintenance Effort

The average distribution of maintenance
effort by activities is presented in Figure 4.
The activities (listed above) have been

grouped into four categories (design, imple-
mentation, test, other). This figure repre-
sents the overall distribution based on total
effort expended on the eleven maintenance

projects from January through October 1994.
It includes both entire release cycles and some
partial release cycles. This distribution is
dominated by the six busiest projects, which
contributed 93% of the hours used in the cal-

culation of Figure 4. The distributions for the
individual projects vary significantly from
each other and also from this average distribu-
tion. When more data are available for com-

plete release cycles, there may be some
reduction in the variability of this distribution
among projects.

OTHER

24%
DESIGN

28%

TEST

MPLEMENT

29*/.

Figure 4. Maintenance Effort Distribution

SEW Proceedings 41 SEL-94-006



OTHER

26%

DESIGN

23%

TEST

3O%

IMPLEMENT
21%

Figure 5. Development Effort Distribution

The distribution of effort during the original

development was not available for many of
these projects. Figure 5, however, presents
the distribution of effort for the original soft-
ware development of eleven fairly typical

projects from this environment.

As illustrated by these two figures, design and
code (implement) activity constitute a larger
percentage of effort during maintenance than
during software development (57% versus
44%). This contrast reinforces the belief that
design and implementation are more costly in
maintenance than in development. There are
many possible reasons for this, for example,
the difficulty in isolating errors and the rela-
tively large overhead required to make small
code changes. One might expect that this
cost increase would be more pronounced for
error corrections than for enhancements,

because adding major enhancements is more

like doing new development work. The data
in the next section support this hypothesis,

showing greater productivity for enhance-
ments than for error corrections.

5.2 Release Characteristics

When programmers, testers, and managers
reported their time spent on maintenance
effort each week, they recorded their hours by
software activities. Prior to mid-August,

when weekly effort collection forms were
revised, they also classified their hours by the
type of change requests on which they worked

(i.e., adaptation, error correction, or
enhancement) and other hours (e.g., manage-
ment, meetings). This provided researchers
insight into the distribution of types of
changes requested and the amount of effort
each type requires.

Figure 6 presents the average distribution of
effort hours by type of change. These data
represent all the effort data for the eleven
target maintenance projects from January to
mid-August 1994. It includes both entire
release cycles and some partial release cycles.
This distribution is again dominated by the
same six busiest projects, which contributed
93% of the hours used in the calculation in

Figure 6. The distributions for the individual
projects vary significandy from each other
and also from this average distribution. For

example, effort spent on enhancements var-
ied from 51% to 89% among the six domi-

nant projects.

ADAPTATION
5%

OTHER
CORRECTION

20%
14%

ENHANCEMENT

61%

Figure 6. Effort Distribution by
Type of Change

Figure 7 presents the distribution of change
requests by type. The data are limited to
completed releases from the last 2 years for
which complete change request data were
available. This amounted to nine releases

containing 83 change requests (4 adaptations,
37 enhancements, 42 error corrections). Only

five of the eleven maintenance projects under
study are represented. As more data from
complete releases become available, this dis-
tribution may change. Again there was much
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variability. The percentage of changes that
were enhancements in a release varied from

20% to 83%, excluding one release that con-
sisted entirely of error corrections.

ADAPTATION5%

ERROR

CORREC_ON ENHANCEMENT
50% 45%

Figure 7. Changes By Type

These last two figures demonstrate that in the
FDD enhancements typically are larger than
error corrections and require more effort to
implement. This is shown by the fact that
although the number of enhancements was
slightly smaller than the number of error cor-
rections (45% versus 50%), the ratio of effort

spent on enhancements to effort spent on
error corrections was 4.3:1.

The difference in size is even more dramatic
than the difference in effort. The
37 enhancements in these nine releases
accounted for 96.6% of the lines of code

added, changed, or deleted, whereas the 42
error corrections accounted for only 3.1%,
for a ratio of 31 :1. By comparing the size
ratio (31:1)to the effort ratio (4.3:1), the
productivity (lines of code added, changed, or
deleted per hour) is about seven times greater
for enhancements than it is for error
corrections.

maintenance work. If these errors are caught
by the testers, they in turn generate additional

change requests which usually become part of
the same release delivery. These latter

changes are termed release indigenous
changes. In this study, an attempt was made
to separate these two categories of changes.
(The effort distribution in Figure 5, however,
includes effort on both operationally indige-
nous and release indigenous change requests.
Revised data collection since mid-August will
allow effort to be separated by change
request.)

The next two figures demonstrate the sources
of the errors in these nine releases, both

operationally indigenous and release indige-
nous. The 83 operationally indigenous
changes included 42 error corrections (see
Figure 8). Note that requirement specifica-
tion, code, and design each represent a signifi-
cant portion of the source of errors, 20% to
35% each. These nine releases also included

29 release indigenous change requests, all of
which were error corrections (see Figure 9).

REQUIREMENT

PREVIOUS

CHANGE
i

13% i

OTHER

8% ::)ESIGN 34%

Figure 8. Operational Errors

5.3 Error Characteristics

The 83 change requests described above repre-
sent the original content of these nine
releases. These are all requests to change the
operational version of the sol, ware; in this
paper, these changes are referred to as opera-
tionally indigenous changes. During the
implementation of each release, however,
some errors usually are introduced by the

Note that requirement specification and
design represent much smaller portions of the
release indigenous errors than of the opera-
tionally indigenous errors. Previous change is
somewhat higher, and coding is much higher,
for release indigenous errors. The distribution

of errors found in release testing is similar to
the distribution of errors found during accep-
tance testing of new development projects.
This similarity suggests that release testing
and development acceptance testing both
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uncover similar kinds of errors with similar

degrees of success. On the other hand, soft-
ware operations seem to uncover a different
distribution of errors, suggesting that opera-
tions are more effective than these testing

processes at uncovering certain types of
errors, such as design errors, for example.
More study is needed to explain why testing
and operations should have such different
error detection distributions.

REQUIREMENT

SPECIFICATION

3%
PREVIOUS

CHANGE

17%

OTHER CODE

7% 63%

DESIGN

10%

Figure 9. Releasc Errors

5.4 Error and Change Rates

When the error rate was analyzed for opera-

tionally indigenous errors, errors were nor-
malized by both the size of the project
(SLOC) and the time period during which they
were detected. This adjustment was made for

the following reasons: It was expected that,
all other things being exlual, a larger piece of
software would tend to have more errors than

a smaller piece of software, so errors/SLOC
would be a more meaningful measure of soft-

ware quality than raw errors. It was also sus-
pected that, all other things being equal, the
piece of software that had been exercised
operationally for a longer time probably
would have more errors uncovered. When

comparing error rates for many projects, this
dual normalization resulted in more uniform

error rates across projects, more so than when
either normalization was done separately, or

when no normalization was performed at all.

Error rate data were available for ten of the

eleven projects in this study, reaching back
2 years for most projects. Analysis of the
error rates for these ten projects over the last
2 years (less than 2 years for some of the
newer projects) resulted in a mean value of
11 errors per 100 KSLOC per year (minimum
5, maximum 32). Project size ranged from 42
to 263 KSLOC.

Release indigenous errors are those that are
introduced by the maintenance process. It
was expected that the more code that was
modified in a release, the more errors were
likely to be introduced. Therefore release
indigenous errors were normalized by the
modified KSLOC in the original content of

the release. Modified KSLOC is the sum of
KSLOC added, changed, and deleted. For the
nine maintenance releases mentioned above,
the mean error rate for release indigenous
errors was 0.8 errors per modified KSLOC
(minimum 0, maximum 6.9). Correcting the
release indigenous errors required more lines
of code to be added, changed, or deleted before
delivering the release. The overall ratio of
this additional modified code to the original
modified code for the nine was 2.5% [25 addi-
tional modified SLOC (minimum 0, maximum

172) per original modified KSLOC].

6. Lessons Learned

This study demonstrated the importance of
closely consulting with the software project

personnel (here maintainers) when carrying
out any software development study. Both
the researchers and the maintainers benefited

by the close working relationship on this
study. The researchers gained a better under-
standing of the difficulties and peculiarities of
the maintenance process; the maintainers

gained some insights into the difficulties of
the data definition, collection, and analysis

process that leads to useful models.

The qualitative analysis that was done for four
of the maintenance projects in this study

helped ensure that the maintainers were inti-
mately involved in the haselining process.
This analysis also helped the researchers to
rethink and to begin to redefine the measure-
ment program. For example, weekly person-
nel effort data is now grouped by release and
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by sot_vare change, instead of merely by
project. Researchers have also redefined and

expanded the list of software activities to
which maintainers apportion their effort. In
addition, the qualitative analysis has suggested
the usefulness of reexamining error taxono-
mies, which the study team hopes to address
at a later date.

As the researchers studied the release process,
it became evident that there was a need to dif-
ferentiate between those errors that were

operationally indigenous and those errors
that were release indigenous. One obvious

reason was that reduction of release indige-
nous errors is an important improvement goal
for maintenance. A second reason is that

each of these error sets has something impor-
tant to say about the maintenance process. In
trying to resolve operationally indigenous
errors (and adaptations and enhancements),
maintainers sometimes introduce release
indigenous errors. When such errors are

introduced, both the original change request
and the change request for the resulting
release indigenous error must be examined to

learn how effective the maintenance process
is and how it might be improved.

Although the definitions given above for
these terms imply that the two error sets are

distinct, in practice, the actual error popula-
tions do not fit the definitions one hundred

percent. For example, the set that this study
termed the operationally indigenous error set
should include only those errors that were

introduced during the original development of
the software. In reality, this set may also
include a few errors that were introduced dur-

ing maintenance, but which were not
identified until the maintenance release

became operational. The release indigenous
error set should include only errors that were
introduced by the maintenance process. In
reality, this set may contain some errors that,
although caught by release testers, were in fact
residing in the operational software and were

not new to the maintenance release. Despite
these imperfections, there was enough consis-
tency in each set to treat them separately.

In characterizing the size of a release, some
measure other than the total number of

changes is necessary, because some changes

(especially enhancements) tended to be more
complex and time consuming than others.
For this study, the total modified lines of code

(new SLOC + changed SLOC + deleted SLOC)
for all changes was used as the measure of
release size.

The release characterization demonstrated

that, on average, FDD releases are composed
of about an equal number of error corrections
and enhancements, but that the enhancements
require significantly more effort and far more
code. Comparing this effort and size data
between enhancements and error corrections

revealed that the productivity for enhance-
ments was approximately seven times greater
than for error corrections. Why this is so,
and whether it is good or bad, remains to be
seen. The characterization of maintenance

errors revealed surprisingly few errors attrib-
uted to requirement specifications or to

design. This deserves further investigation,
especially since the qualitative analysis sug-
gested that requirements deficiencies on soft-
ware change requests were a problem. The
preliminary characterization of error rates
resulted in two different ways to normalize

errors, one appropriate for operationally
indigenous errors and another appropriate for
release indigenous errors.

Qualitative analysis suggested that the FDD
needs to provide better guidelines for content
and format of change requests and release
documents. The FDD also needs to enforce

stricter adherence to the maintenance proc-

ess, especially attendance at review meetings.
The preliminary quantitative analysis pro-
vided many insights into FDD maintenance

but also spawned as many new questions. The
preliminary effort distributions indicated that

design and implementation require more
effort in maintenance than they do in new
development. Exactly why this is so is not
clear at this time.

7. Future Study of Software
Maintenance in the SEL

The combination of qualitative and quantita-
tive analysis methods has provided a compre-
hensive look at the software maintenance
process in the FDD. From this researchers

have made a good start at baselining this
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process. Preliminary quantitative data analy-
sis is based on only nine complete mainte-
nance releases. More releases need to be
studied. Also baseline models need to be
extended to include an understanding of main=
tenance cost and cost estimation, plus a better

understanding of error rates. Beyond this,
future maintenance study activities need to

provide a more complete understanding of the
testing process and the inspection and certifi-
cation process. The impact of soi_are
development practices on later software
maintenance also must be measured.

The FDD has recently embarked on a major

effort to port most of its software from IBM
mainframes to UNIX workstations. This
effort will result in a great many maintenance

change requests of the adaptation type. The
current study needs to analyze whether and
how it should adapt itself to make the most
use of the data that this transition will

generate.

Once the understanding phase of the current
study is completed, the assessing phase will

begin. Researchers will design and carry out
experiments through which they will be seek-
ing answers to these questions and others:

1. How might we know when a product has
outlived its usefulness?

2. What is the "right size" for a mainte-
nance release?

3. Can we predict the most error-prone
modifications, and if so how?

4. How can we more accurately estimate
the cost of software changes?

This application of the QIP has expanded the
SEL's understanding of the maintenance

process and product in this environment. Fur-
ther baselining, experimentation, and research
should lead to recommendations for

improvements to the maintenance process
that can be packaged and instituted in the
FDD.
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Building an Experience Factory for
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An Experience Factory: for. Maintenance

The QIP

(high level)

The QIP

(detailed

level)

• Characterize the project

• Set goals for the project performance

and improvement

• Choose processes for the project

• Evaluate the processes

• Analyze for future projects

• Package experience for experience

base

Development Maintenance

l • Understanding ...... Understanding [

• Characterize the release & the project

• Set goals for the project performance

and improvement and for future
evolution

- Choose processes for the project based

on product knowledge

• Evaluate the processes

• Analyze for this product & future

projects

• Package experience for experience

base and for the evolution of this

product

_, Software Engineering Laboraton.
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Experience Factory
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tools, consulting.., ...............................

• Focus includes releases

• Analysis for release feedback requires quicker response (release life cycle -6 months )
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m

l
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Exl_rience O Package [

Base I
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i

Software Engineering Laborator_

Bu.:i]:ding:the: Ex.:perien.ce: B,a_e:

Key First Step is Still Understanding

Use SEL Development Experience as a Basis for Studying Maintenance

Set Goals

- Characterize the maintenance process

- Characterize the maintenance products

Use Qualitative and Quantitative Analysis

- Qualitatively - Follow an organized approach to understanding

_* Work with maintainers and project leads

,_ Process can vary across projects (process documents aren't always followed)

- Quantitatively - Establish a measurement program to build baselines

- Use quantitative data to understand the qualitative and use qualitative data to help define the
data to collect

Qualitative and Quantitative Components [are Critical to Maintenance Understanding

_ Soflware Engineering Laborator.
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Qualitative Approach to Understanding

Steps used independently I

on 4 different projects in

one environment

Step 1:

Identify I

Organizational Step 2:

Entities Identify

Phases

Step 3:

Identify

Activities

involved in

each phase

Software Engineering Laborator_

Step 4:

Select one or

more past
releases for

analysis

Step 5:

Analyze the

problems
that

occurred in

the releases

Step 6:

Establish

frequency

and

consequences
of flaws in

)rocess and

organization

St eps_ 1.. 3:: Und;ey. smpd O..rgo_n!Lz__tj:9.n_a_.nd the:
Rele_as_ _oc_css:

• Step 1 - Identify organizational entities

- Identify distinct teams and their roles

- Characterize information flow between teams

eg. release approval passes from the configuration control board to the maintenance team

• Step 2 - Identify the phases of the release process

eg. preliminary release definition...release design review...integration test

• Step 3 - Identify activities involved in each phase

- Define each phase in terms of inputs, outputs, and activities

eg. Design phase:

Input is Release Review Document,

Output is design, test plans and prototypes,

Activities are changing design, changing code, unit testing and integration testing

I Steps 1-3 Provide: li

• Understanding of the process

• Point of comparison amongst projects

• Check of adherence to policies

_ Soft.ram Engineering Laborato_ _ ........
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St ps: 4 -6:: ! entify Problem: Areas

• Step 4 - Choose a recent release for analysis

- Choose recent releases

- Choose releases with complete documentation

- Choose releases where the technical lead is still available for interview

• Step 5 - Analyze causes of problems

- For each change in a release use interviews and document review to:

,> Determine the difficulty of the change

,> Determine the maintenance process flaws

,> Determine what delays and errors were caused by the process flaws

eg. One change resulted in 11 errors.

Due to Incomplete requirements and Unclear definition of responsibilities.

Up to one month of effort lost.

Step 6 - Establish frequency and consequences of flaws in the process and organization

- Provide suggestions for improvement based on Step 5 from multiple projects, e.g.

>>Standard for content and format of change requirements needed

>>Stricter adherence to process needed

_>Document and review content needs explicit definition

\_p[ Software Engineering Laboratory

Quanfi:ta.tjv-e Ap, woach to, Understanding

Measurement program to establish baseline understanding of maintenance process and

product

Based on goal for the maintenance study generate questions such as

- What is effort distribution during maintenance?

- What are characteristics of maintenance releases?

- What are characteristics of maintenance errors?

- What are error and change rates?

- etc.

Measurement data includes

- Effort by activity

- Effort by type of maintenance change

- Error and change data

>, Time spent

_, Source of errors

>) Class of errors

- Release estimates and actuais

- Size of software under maintenance

_ Sofl_vam Engineering Laborator_
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Understanding: Maintenance Effort

Maintenance Effort Distribution * Development Effort Distribution **

OTHER
DESIGN OTHER

24% DESIGN

28% 26% 23%

TEST TEST

19% 30%

CODE

29%

CODE

21%

Design and Code are a Larger Percentage of [

Activity During Maintenance [

*Based on 11 projects [

• * Based on l I different projects [

:_ Software Engineering Laboratoq,

Effort Distribution by Type of Change*

ADAPTATION

5%

OTHER __

  o 2giON

ENHANCEMENT

61%

Changes by Typ[*

ADAPTATION

5%

ENHANCEMENT

45%

changes and large enhancements l' .. 83chmr_o_9_:Rca_s

Software Engineering Laborator_
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Error: C h_a.r  ac.t  i:stj

PREVIOUS

CHANGE

13%

OTHEI

8%

Operational Errors*

(Found during operational use)

R EQUIREMFJ, Ff

SPECIFICATION

CODE

27%

Source of Errors

Release Errors*

(Due to maintenance process)

REQUIREMENT

SPECIFICATION

PREVIOUS 3%

CHANGE

CODE

D_%N3N DESIONI10%i_ _: ': _- ,

63%

Software Engineering Laboratorj

Operational Error Rate

- 10 Errors / 100 KSLOC / year (5 min., 32 max.)

Release Error Rate (through acceptance testing)

- 0.8 Errors / Modified KSLOC (0 min., 6.9 max.)

Change Rate

- 3.7% of code modified / release (0.1% min., 11.7% max.)

1-
- B_sedon 9 releases ]

- ModifiedKSLOC = 1000"sof New+ Modified + DeletedLOC [

- Project size ranges from 48 to 227 KSLOC ]_

_ Software Engineering Lsbomtorj
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L.ea n.ed 

• Include the Maintainers in the Study

- Valuable to both groups

• Use the Qualitative Analysis to Help Define the Measurement Program

- We now collect effort by change

- We redefined our effort activities

- We need to reexamine our error taxonomies

• Distinguish Between Operational Errors and Errors During Releases

• Define a Measure for Release Size

- We use New LOC + Deleted LOC + Changed LOC

_! Sollware Engineering Laborator_

• Using Qualitative and Quantitative Understanding in Combination has been
Very Successful

• Future Maintenance Study Activities

- Baselining Activities Need to Continue to
. Understand cost and cost estimation

_> Understand error rate

- Understanding Testing and Inspections

- Understanding how Development Impacts Maintenance

- Understanding the Adaptation Process

- Experiment with Process Changes

• We would like to be able to

- know when a product has outlived its usefulness

- know the "right size" for a release

- predict the most error prone modifications

- estimate the cost for changes

- leverage our experience base to solve these quicker

_ So/lware Engineering Labocator_
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